Synthesis of the glycidol (1R,2R)-1-iodo-2-(triphenylsilyloxy)cyclopropane: new rearrangements of 2,3-epoxy-3-(trialkyl/arylsilyl)-propan-1-ols

Barbara Achmatowicz, Piotr Raubo and Jerzy Wicha*
Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44, 01-224 Warsaw, Poland

Abstract

Reaction of the mesylates of selected glycidols $\mathbf{1 b}, \mathbf{5 a}, \mathbf{5 b}$ and $\mathbf{5 c}$ with sodium iodide in acetone has been investigated. The mesylate 1b afforded the iodide 2 and the cyclopropane derivative $\mathbf{3}$ in a ratio which depended upon the reaction time. Whilst the mesylate 5a provided the iodide $6 a$ as the sole product, the mesylates $\mathbf{5 b}$ and 5 c gave mixtures of the corresponding unrearranged iodoepoxysilanes $\mathbf{6 b}$ and $\mathbf{6 c}$, and the epoxides 7 b and 7 c .

To prepare the target compound, 2,3-epoxy-1-iodo-3-(triphenylsilyl)propane $\dagger 2$ (Scheme 1), the mesylate $\mathbf{1 b}$ (obtained in

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, NaI , acetone, room temp.
almost quantitative yield from the glycidol $1 \mathbf{a}^{1.2}$) was treated with an excess of sodium iodide in acetone (4 h , room temperature) to give two products separable by chromatography. The major product (46% yield), was the expected iodide 2 whilst the minor constituent (18% yield) was identified as the cyclopropane 3 on the basis of the following spectral evidence. Its ${ }^{1} \mathrm{H}$ NMR spectrum differed from those of the glycidols, exhibiting signals corresponding to aromatic protons $\left(15 \mathrm{H}, \delta_{\mathrm{H}}\right.$ 7.65-7.30) and four eight-line one-proton multiplets centred at $\delta_{\mathrm{H}} 3.81,2.44,1.36$ and 0.91 . The ${ }^{13} \mathrm{C}$ NMR spectrum indicated the presence of aromatic carbon atoms ($\delta_{\mathrm{C}} 135-125$) and of three carbon atoms with signals at $\delta_{\mathrm{C}} 56.53,19.34$ and -14.29 . The structure 3 was confirmed by decoupling experiments and by elemental analysis. Although compound 3 was optically active it was unstable in the presence of the shift reagent \{tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III), $\left.\left[\mathrm{Eu}(\mathrm{hfc})_{3}\right]\right\}$, and the enantiomeric excess could not be determined.

When the mesylate 1b was allowed to react with sodium iodide for longer periods of time there was an increase in the yield of cyclopropane 3 : thus, after 20 h at room temperature, 3 was isolated in 49% yield and iodo epoxide 2 in 13% yield. This result indicates that 2 partly rearranged into 3, a plausible mechanism for which is outlined in Scheme 1. After addition of an iodide anion at the 3 -position of the epoxysilane, ${ }^{3}$ [1,3]migration of the triphenylsilyl group from carbon to oxygen occurs, followed by intramolecular displacement of the

[^0]mesyloxy group (or the iodide). A concerted process providing trans-substituted cyclopropane is proposed. The J value of 2.14 Hz for 1-H and 2-H supports the stereochemical assignment. To our knowledge no similar rearrangement has been recorded for glycidol derivatives. ${ }^{4}$

Since the preparation and synthetic application of alkoxycyclopropanes are of interest, ${ }^{5}$ we examined whether other silyl substituted glycidols underwent similar rearrangements. To this end, the alcohols $4 a,{ }^{2} \mathbf{4 b}{ }^{2}$ and $4 c^{6}$ were converted into the mesylates 5a-5c, respectively, the latter then being treated with sodium iodide in acetone. The results are shown in Scheme 2.

Scheme 2 Reagents and conditions: i, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{ii}, \mathrm{NaI}$, acetone, room temp.

Reaction of mesylates 5 with NaI in acetone at room temp.

Mesylate	Reaction time (h)	Product(s) (\% yield, ratio)
$\mathbf{5 a}$	6	$\mathbf{6 a}(89)-$
$\mathbf{5 b}$	6	$\mathbf{6 b} \mathbf{7 b}(66,2.6: 1)^{a}$
$\mathbf{5 c}$	6	$\mathbf{6 c} \mathbf{7 c}(80,1.6: 1)^{a}$

${ }^{a}$ The mixture could not be separated by chromatography; the isomer
ratio was determined by NMR.

The mesylate 5a on treatment with sodium iodide in acetone for 6 h gave the iodide 6 a as the sole product (89% yield). A longer reaction time gave a slight decrease in the yield of $\mathbf{6 a}$ but no side products could be detected. The mesylate $\mathbf{5 b}$ afforded two products (isolated in 66% yield) that were inseparable by chromatography. However the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this mixture indicated that it consisted of epoxysilanes $\mathbf{6 b}$ and 7b in a ratio of ca. 2.6: 1. Similarly, treatment of the mesylate 5c with sodium iodide in acetone yielded the epoxysilanes $\mathbf{6 c}$ and 7 c (1.6:1). Formation of compounds 7 may be explained in
terms of attack by the iodide anion at the 3-position of the respective epoxysilanes 5 or $\mathbf{6}$, followed by epoxide ring closure and loss of the mesyloxy group, or iodide, respectively.
In conclusion, it was shown that the reactivity of the glycidols investigated depends in a remarkable way upon the nature of the silyl substituent.

Experimental

Mps were determined on a Kofler hot-stage microscope and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were obtained on either a Bruker AM 500 (500 and 125 MHz) or a Varian GEM 200 (200 and 50 MHz) spectrometer with SiMe_{4} as an internal standard. J values are given in Hz . Column chromatography was performed using silica gel, 60 (Merck), $230-400$ mesh. Optical rotations, measured using a $1 \mathrm{~cm}^{3}$ capacity cell (10 cm path length), are recorded as $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

Preparation of ($\mathbf{2 R}, \mathbf{3 R}$)-2,3-epoxy-1-mesyloxy-3-(triphenylsilyl) propane 1b

Mesyl chloride ($0.2 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$) was added at $0-5^{\circ} \mathrm{C}$ to a stirred solution of $1 \mathrm{a}^{2}(227 \mathrm{mg}, 0.68 \mathrm{mmol})$ and triethylamine $\left(0.4 \mathrm{~cm}^{3}\right)$ in methylene dichloride ($3 \mathrm{~cm}^{3}$). The mixture was kept at $0-5{ }^{\circ} \mathrm{C}$ for 30 min after which it was diluted with ether (35 cm^{3}), washed with water ($3 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was dissolved in hexane and the solution filtered through a pad of silica gel to give $\mathbf{1 b}(270 \mathrm{mg}, 96 \%)$, mp $127-128{ }^{\circ} \mathrm{C}$ (acetone-hexane); $[\alpha]_{D}^{21}+20.1\left(c 1.61\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 2.92(1 \mathrm{H}, \mathrm{d}, J 3.3,3-\mathrm{H}), 3.03\left(\mathrm{~s}, 3, \mathrm{MeSO}_{3}\right), 3.11(1$ H , ddd, $J 3.3,2-\mathrm{H}), 3.17\left(1 \mathrm{H}, \mathrm{dd}, J 6.5\right.$, and $\left.11.7,1-\mathrm{H}_{\mathrm{a}}\right), 4.59(1$ H , dd, $J 2.7$ and $11.7,1-\mathrm{H}_{\mathrm{b}}$) and $7.3-7.6(20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(50$ $\mathrm{MHz}) 37.8\left(\mathrm{MeSO}_{3}\right), 46.9(\mathrm{C}-3), 53.0(\mathrm{C}-2), 71.2(\mathrm{C}-1), 128.2$ $\left(\mathrm{C}_{m}\right), 130.4\left(\mathrm{C}_{p}\right), 131.3\left(\mathrm{C}_{i p s s}\right)$ and $135.9\left(\mathrm{C}_{o}\right)$ (Found: C, 64.0; H, 5.6. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SSi}$ requires $\mathrm{C}, 64.36 ; \mathrm{H}, 5.40 \%$).

Preparation of (2S,3S)-3-(tert-butyldimethylsilyl)-2,3-epoxy-1mesyloxy propane 5 a

This compound was obtained by an analogous method to that described above using the alcohol $\mathbf{4 a}^{2}$ ($310 \mathrm{mg}, 1.65 \mathrm{mmol}$), triethylamine ($0.4 \mathrm{~cm}^{3}$), methylene dichloride ($4 \mathrm{~cm}^{3}$) and mesyl chloride ($0.2 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$). Product $5 \mathrm{a}\left(439 \mathrm{mg}, 100 \%\right.$); $[\alpha]_{\mathrm{D}}^{25}$ $-24.5\left(c 2.18\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})-0.04$ and $0.01(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime} \mathrm{Si}\right), 2.22(1 \mathrm{H}, \mathrm{d}, J 3.5,3-\mathrm{H}), 3.07$ (3 H , $\left.\mathrm{s}, \mathrm{MeSO}_{3}\right), 3.12(1 \mathrm{H}$, ddd, $J 2.7,3.5$ and $6.8,2-\mathrm{H}), 4.06(1 \mathrm{H}$, dd, $J 6.8$ and $11.7,1-\mathrm{H}_{\mathrm{a}}$) and $4.53\left(1 \mathrm{H}, \mathrm{dd}, J 2.7\right.$ and $\left.11.7,1-\mathrm{H}_{\mathrm{b}}\right)$; $\delta_{\mathrm{C}}(50 \mathrm{MHz})-8.5\left(\mathrm{Me}_{2} \mathrm{Si}\right), 16.5\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 26.4\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 37.7$ $\left(\mathrm{MeSO}_{3}\right), 47.0(\mathrm{C}-3), 52.2$ (C-2) and 72.0 (C-1) (Found: C, 45.0; $\mathrm{H}, 8.5 . \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SSi}$ requires $\mathrm{C}, 45.08 ; \mathrm{H}, 8.32 \%$).

Preparation of ($\mathbf{2 S}, \mathbf{3 S}$)-3-dimethylphenylsilyl-2,3-epoxy-1mesyloxypropane 5b

This compound was obtained by an analogous method to that described for $\mathbf{1 b}$ using the alcohol $\mathbf{4 b}^{2}(204 \mathrm{mg}, 0.98 \mathrm{mmol})$, triethylamine ($0.25 \mathrm{~cm}^{3}$), methylene dichloride ($3 \mathrm{~cm}^{3}$) and mesyl chloride $\left(0.12 \mathrm{~cm}^{3}\right)$ to give $5 \mathbf{b}(280 \mathrm{mg}, 100 \%) ;[\alpha]_{\mathrm{D}}^{25}$ $-14.15\left(c 1.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.35$ and $0.39(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 2.36(1 \mathrm{H}, \mathrm{d}, J 3.5,3-\mathrm{H}), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{3}\right), 3.12(1 \mathrm{H}$, ddd, $J 2.7,3.4$ and $6.7,2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 6.7\right.$ and $11.8,1-\mathrm{H}_{\mathrm{a}}$) and $4.54\left(1 \mathrm{H}\right.$, dd, $J 2.6$ and $\left.11.8,1-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}-5.4$ and -5.3 $\left(\mathrm{Me}_{2} \mathrm{Si}\right), 37.8\left(\mathrm{MeSO}_{3}\right), 48.3(\mathrm{C}-3), 52.8(\mathrm{C}-2), 71.8(\mathrm{C}-1)$, $128.0\left(\mathrm{C}_{m}\right), 129.8\left(\mathrm{C}_{p}\right), 133.8\left(\mathrm{C}_{o}\right) 134.8\left(\mathrm{C}_{\text {ipso }}\right)$ (Found: C, 50.3; $\mathrm{H}, 6.5 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{SSi}$ requires $\mathrm{C}, 50.32 ; \mathrm{H}, 6.33 \%$).

Preparation of ($2 S, 3 S$)-2,3-epoxy-1-mesyloxy-3-

(trimethylsilyl)propane 5c

This compound was obtained by an analogous method to that described for $\mathbf{1 b}$ using the alcohol $4 \mathbf{c}^{6}$ ($248 \mathrm{mg}, 1.7 \mathrm{mmol}$), triethylamine ($0.4 \mathrm{~cm}^{3}$), methylene dichloride ($3 \mathrm{~cm}^{3}$) and mesyl
chloride ($0.2 \mathrm{~cm}^{3}$). Product 5 c : $\left(380 \mathrm{mg}, 100 \%\right.$); $[\alpha]_{\mathrm{D}}^{25}-22.8(c$ $\left.1.1 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 2.18(1 \mathrm{H}, \mathrm{d}, J$ $3.5,3-\mathrm{H}), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{3}\right), 3.13(1 \mathrm{H}$, ddd, $J 2.7,3.4$ and 6.7 , $2-\mathrm{H}), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J 6.7\right.$ and $\left.11.7,1-\mathrm{H}_{\mathrm{a}}\right)$ and $4.56(1 \mathrm{H}, \mathrm{dd}, J 2.7$ and $\left.11.7,1-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})-3.8\left(\mathrm{Me}_{3} \mathrm{Si}\right), 37.8\left(\mathrm{MeSO}_{3}\right), 48.9$ (C-3), 52.7 (C-2) and 72.0 (C-1) (Found: C, 37.3; H, 7.2. $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SSi}$ requires $\mathrm{C}, 37.47 ; \mathrm{H}, 7.19 \%$).

Reaction of the mesylate $\mathbf{1 b}$ with $\mathbf{N a I}$

Method A. Dry $\mathrm{NaI}(570 \mathrm{mg}, 3.8 \mathrm{mmol})$ was added to a solution of $1 \mathrm{bb}(340 \mathrm{mg}, 0.83 \mathrm{mmol})$ in dry acetone ($3 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 4 h , after which it was diluted with hexane $\left(30 \mathrm{~cm}^{3}\right)$, washed with water ($3 \times 10 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The mixture was evaporated and the residue chromatographed on silica gel (2.5 g , hexane-acetone) to give:
(i) ($1 R, 2 R$)-1-iodo-2-(triphenylsilyloxy)cyclopropane 3 (66 $\mathrm{mg}, 18 \%$); $[\alpha]_{\mathrm{D}}^{20}-51.9\left(c 2.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.908$ (1 H , ddd, $\left.J_{3 \mathrm{a} .1} 5.58, J_{3 \mathrm{a} .3 \mathrm{~b}} 7.55, J_{3 \mathrm{a} .2} 9.303-\mathrm{H}_{\mathrm{a}}\right), 1.356(1 \mathrm{H}$, ddd, $\left.J_{3 \mathrm{~b} .2} 3.66, J_{3 \mathrm{~b} .1} 7.05, J_{3 \mathrm{~b} .3 \mathrm{a}} 7.55,3-\mathrm{H}_{\mathrm{b}}\right), 2.440\left(1 \mathrm{H}\right.$, ddd, $J_{2.1}$ $\left.2.14, J_{2.3 \mathrm{a}} 3.66, J_{2.3 \mathrm{~b}} 9.30,1-\mathrm{H}\right), 3.813\left(1 \mathrm{H}\right.$, ddd, $J_{1.2} 2.14, J_{1.3 \mathrm{~b}}$ $\left.5.58, J_{1.3 \mathrm{a}} 7.05,2-\mathrm{H}\right)$ and $7.3-7.6(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(125 \mathrm{MHz})$ $-14.29(\mathrm{C}-1), 19.34(\mathrm{C}-3), 56.53(\mathrm{C}-2), 128.01\left(\mathrm{C}_{m}\right), 130.32$ $\left(\mathrm{C}_{p}\right), 133.33\left(\mathrm{C}_{\text {ipso }}\right)$ and $135.38\left(\mathrm{C}_{o}\right)$ (Found: C, 57.1; H, 4.4. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{IOSi}$ requires C, $57.02 ; \mathrm{H}, 4.32 \%$).
(ii) ($2 R, 3 R$)-2,3-epoxy-1-iodo-3-(triphenylsilyl)propane 2 $(170 \mathrm{mg}, 46 \%) ;[\alpha]_{\mathrm{D}}^{25}+5.0$ (c 2.01 in benzene); $\delta_{\mathrm{H}}(200 \mathrm{MHz})$ $2.87(1 \mathrm{H}, \mathrm{d}, J 2.9,3-\mathrm{H}), 3.03-3.21(2 \mathrm{H}, \mathrm{m}, 2$ and $1-\mathrm{H}), 3.41$ (1 $\mathrm{H}, \mathrm{dd}, J 4.6$ and $8.8,1-\mathrm{H})$ and $7.3-7.6(20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(50$ $\mathrm{MHz}) 6.7(\mathrm{C}-1), 53.8,56.4(\mathrm{C}-2$ and $\mathrm{C}-3), 128.1\left(\mathrm{C}_{m}\right), 130.2$ $\left(\mathrm{C}_{p}\right), 131.6\left(\mathrm{C}_{\text {ipso }}\right)$ and $135.9\left(\mathrm{C}_{o}\right)$ [Found: C, $57.00 ; \mathrm{H}, 4.12$. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{IOSi}$ (442.36) requires C, 57.02 ; $\mathrm{H}, 4.32$].
Method B. In an analogous experiment where mesylate 1b (84 $\mathrm{mg}), \mathrm{NaI}(400 \mathrm{mg})$ and acetone ($3 \mathrm{~cm}^{3}$) were used, the mixture was stirred for 20 h at room temp. to give the iodide 2 (12 mg , 13%) and the cyclopropane 3 ($44 \mathrm{mg}, 49 \%$).

Reaction of the mesylate 5 a with NaI

$\mathrm{NaI}(400 \mathrm{mg}, 2.66 \mathrm{mmol})$ was added to a solution of $5 \mathrm{a}(100 \mathrm{mg}$, 0.38 mmol) in acetone ($3 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 6 h after which it was diluted with hexane ($30 \mathrm{~cm}^{3}$), washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed on silica gel (1.5 g , hexaneacetone) to give ($2 S, 3 S$)-3-(tert-butyldimethylsilyl)-2,3-epoxy-1-iodopropane 6a ($100 \mathrm{mg}, 89 \%$); $[\alpha]_{\mathrm{D}}^{25}+9.0$ (c 1.25 in benzene); $\delta_{\mathrm{H}}(200 \mathrm{MHz})-0.03$ and $0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.97$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}$), 2.18 ($1 \mathrm{H}, \mathrm{d}, J 3.0,3-\mathrm{H}$), 3.02-3.13(2 H, m, $1-$ and $2-\mathrm{H}$) and $3.34(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $12.3,1-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})$ -8.4 and $-8.3\left(\mathrm{Me}_{2} \mathrm{Si}\right), 7.6(\mathrm{C}-1), 16.6\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 26.5\left(\mathrm{Me}_{3}{ }^{-}\right.$ CSi), 54.4 and 55.8 (C-2 and C-3) (Found: C, 36.4; H, 6.4. $\mathrm{C}_{19} \mathrm{H}_{19}$ IOSi requires $\mathrm{C}, 36.24 ; \mathrm{H}, 6.42 \%$).

Reaction of the mesylate 5 b with NaI

$\mathrm{NaI}(470 \mathrm{mg}, 2.66 \mathrm{mmol})$ was added to a solution of $\mathbf{5 b}(114 \mathrm{mg}$, 0.4 mmol) in acetone ($3 \mathrm{~cm}^{3}$). The mixture was stirred at room temp. for 6 h after which it was diluted with hexane ($30 \mathrm{~cm}^{3}$), washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed on silica gel $(1.5 \mathrm{~g}$, hexaneacetone) to give a mixture of ($2 S, 3 S$)-3-dimethylphenylsilyl-2,3-epoxy-1-iodopropane 6b and ($1 S, 2 S$)-1-dimethylphenylsilyl-2,3-epoxy-1-iodopropane 7b $(84 \mathrm{mg}, 66 \%, 2.6: 1)$. $\mathbf{6 b}$: $\delta_{\mathbf{H}}(200$ $\mathrm{MHz}) 0.35$ and $0.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 2.32(1 \mathrm{H}, \mathrm{d}, J 2.8,3-\mathrm{H})$, 3.05-3.17 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $1-\mathrm{H}_{\mathrm{a}}$) and $3.31(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $\left.12.6,1-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{c}}(50 \mathrm{MHz})-5.2\left(\mathrm{Me}_{2} \mathrm{Si}\right), 7.4(\mathrm{C}-1), 55.6,56.3(\mathrm{C}-$ 2 and $\mathrm{C}-3)$, $128.0\left(\mathrm{C}_{m}\right), 129.7\left(\mathrm{C}_{p}\right), 133.9\left(\mathrm{C}_{o}\right)$ and $135.2\left(\mathrm{C}_{\text {ipso }}\right)$. 7b: $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.55$ and $0.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 2.50(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 2.81\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}\right)$ and $2.90-3.01(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz})-3.1$ and $-3.0\left(\mathrm{Me}_{2} \mathrm{Si}\right), 17.6(\mathrm{C}-1), 50.2,53.7(\mathrm{C}-2$
and C-3), $127.8\left(\mathrm{C}_{m}\right), 129.8\left(\mathrm{C}_{p}\right), 134.2\left(\mathrm{C}_{o}\right)$ and $135.2\left(\mathrm{C}_{\text {ipso }}\right)$ (Found: C, 41.73; H, 4.97. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{IOSi}$ requires $\mathrm{C}, 41.52 ; \mathrm{H}$, 4.75%).

Reaction of the mesylate 5 c with NaI

$\mathrm{NaI}(600 \mathrm{mg}, 2.66 \mathrm{mmol})$ was added to a solution of $5 \mathrm{c}(197 \mathrm{mg}$, $0.88 \mathrm{mmol})$ in acetone ($8 \mathrm{~cm}^{3}$). The mixture was stirred at $0-$ $5^{\circ} \mathrm{C}$ for 6 h after which it was diluted with pentane containing 0.1% of triethylamine ($30 \mathrm{~cm}^{3}$), washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was chromatographed on silica gel (1.5 g ; pentane with 0.1% of triethylamine) to give a mixture of ($2 S, 3 S$)-2,3-epoxy-1-iodo-3-(trimethylsilyl)propane (6 c) and ($1 S, 2 S$)-2,3-epoxy-1-iodo-1-(trimethylsilyl)propane (7 c) $(160 \mathrm{mg}, 80 \%, 1.6: 1) .6 \mathrm{c}: \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.08(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right), 2.13(1 \mathrm{H}, \mathrm{d}, J 3,3-\mathrm{H}), 3.2\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.1-\mathrm{H}_{\mathrm{b}}\right)$ and $3.3\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{a}}\right) ; \delta_{\mathrm{c}}(50 \mathrm{MHz}) 3.689\left(\mathrm{Me}_{3} \mathrm{Si}\right), 7.796(\mathrm{C}-1)$, 56.208 and $56.277(\mathrm{C}-2$ and $\mathrm{C}-3) .7 \mathrm{c}: \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.24(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 2.50\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.3.0,3-\mathrm{H}_{\mathrm{b}}\right), 2.72(1 \mathrm{H}, \mathrm{d}, J 9.5,1-$ $\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and $3.7,3-\mathrm{H})$ and $3.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 1.833(\mathrm{SiMe}), 18.803(\mathrm{C}-1), 50.339$ and $53.823(\mathrm{C}-2$ and C-3). Although the sample could be stored for several hours as a solution (pentane) in a refrigerator, it rapidly decomposed on evaporation of the solvent.

References

1 For a review on glycidols, see: R. M. Hanson, Chem. Rev., 1991, 91, 437.

2 P. Raubo and J. Wicha, Tetrahedron: Asymmetry, 1995, 6, 577.
3 P. F. Hudrlik and A. M. Hudrlik in Advances in Silicon Chemistry, ed. G. L. Larson, JAI Press, Greenwich, 1993, vol. 2, p. 1.

4 (a) For a review on tandem transformations initiated by the silyl group migration, see: P. Jankowski, P. Raubo and J. Wicha, Synlett, 1994, 985. (b) For a recent relevant work, see: M.-R. Fischer, A. Kirschning, T. Michel and E. Schaumann, Angew. Chem., Int. Ed. Engl., 1994, 33, 217.
5 (a) S. Murai, I. Ryu and N. Sonoda, J. Organomet. Chem., 1983, 250, 121; (b) D. H. Gibson and C. H. DePuy, Chem. Rev., 1974, 74, 605; (c) O. G. Kulinkovich, Russ. Chem. Rev., 1993, 62, 839; (d) O. G. Kulinkovich, S. V. Sviridov and D. A. Vasilievski, Synthesis, 1991, 234; (e) E. J. Corey, S. A. Rao and M. C. Noe, J. Am. Chem. Soc., 1994, 116, 9345.
6 (a) T. Katsuki, Tetrahedron Lett., 1984, 25, 2821; (b) Y. Kobayashi, T. Ito, I. Yamakawa, H. Urabe and F. Sato, Synlett, 1991, 811 ; (c) Y. Kitano, T. Matsumoto and F. Sato, Tetrahedron, 1988, 44, 4073; (d) P. Raubo and J. Wicha, Synth. Commun., 1993, 23, 1273.

7 A. G. Brook, Acc. Chem. Res., 1974, 7, 77.
Paper 5/02046H
Received 31st March 1995
Accepted 2nd May 1995

[^0]: \dagger Glycidol carbon numbering is retained for the iodo derivatives. The name glycidol is retained for convenience and refers to 2,3-epoxypropan-1-ol.

